Одобрена Советом ФЭС

Кафедра ЛС и ИТС

Методическая разработка к лабораторной работе №35 «Измерение параметров каналов системы WDM с помощью глаз-диаграммы»

Курс «Методы и средства измерений в телекоммуникационных системах» специальность «МТС» 201000

Составили:

Редактор: Рецензент: д.т.н., проф. Бурдин В.А. к.т.н., доц. Баскаков В.С. к.т.н., доц. Бурдин А.В. к.т.н., доц. Косова А.Л. д.т.н., проф. Андреев В.А. проф. Иванов В.И.

Самара 2004 г.

1. ЦЕЛЬ РАБОТЫ

Приобретение практических навыков измерения основных параметров каналов цифровых систем передачи на примере анализа глаз-диаграмм цифровых сигналов на выходе линейного тракта ВОЛП на входое оптического демультиплексора системы WDM.

2. ЛИТЕРАТУРА

2.1 Бакланов И.Г. Методы измерений в системах связи. М.: ЭКО-ТРЕНДЗ, 1999. – с. 196.

2.2 Иванов А.Б. Волоконная оптика: компоненты, системы передачи, измерения. М.: САЙРУС СИСТЕМС, 1999. – 671с.

2.3 Оптические системы передачи: Учебник для вузов / Б.В. Скворцов, В.И. Иванов, В.В. Крухмалев, В.Б. Витевский, А.И. Сазер, В.П. Ильичев; под. ред. В.И. Иванова. – М.: Радио и связь. – 1994. – 224 с.

2.4 Гауэр Дж. Оптические системы связи: Пер. с англ. – М.: Радио и связь, 1989. – 504 с.

2.5 Убайдуллаев Р.Р. Протяженные ВОЛС на основе EDFA // Lightwave russian edition. – 2003 – №1. – стр. 22 – 28.

2.6 DWDM Performance and Conformance Testing Primer / Tektronix. – 2001. – 62 p.

2.7 Стариков Н.С. Q-фактор: новый подход к анализу качества цифровых систем передачи // Метрология и измерительная техника в связи. – 2002. - №5. – стр. 17 – 18.

2.8 DWDM: Today's test equipment for tomorrow's DWDM communication systems / Acterna. – 2002.

2.9 Keiser G. Optical Fiber Communications. McGraw-Hill, 2000.

2.10 www.VPIphotonics.com

3. ПОДГОТОВКА К РАБОТЕ

3.1 Изучить методику измерения глаз-диаграммы.

3.2 Изучить основы анализа и идентификации глаз-диаграммы.

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

4.1 Построение глаз-диаграммы. Методика измерения.

4.2 Идентификация глаз-диаграммы.

4.3 Поясните термин «джиттер передачи данных».

4.4 Что такое глубина модуляции?

4.5 Что такое «коэффициент ошибок»?

4.6 Поясните термин «Q-фактор».

4.7 Порядок измерения Q-фактора.

4.8 В чем заключаются преимущества и недостатки измерения коэффициента ошибок через определение Q-фактора, по сравнению с традиционными методами?

4.9 Идентификация маски (шаблона) глаз-диаграммы. Назначение и область применения.

4.10. Стандартные маски глаз-диаграммы.

5. ОБЩИЕ СВЕДЕНИЯ

5.1 Данная лабораторная работа разработана на основе приложения к [2.9], включающего в себя цикл демонстрационных программ, представляющих собой, т.н. «страницы динамических данных» (Dynamic Data Sheets - DDSTM), созданных с помощью интерактивных систем, таких, как, например, VPItransmissionMakerTM кампании VPIsystems Corp. [2.10]. В свою очередь, приложения DDSTM воспроизводятся с помощью программы VPIplayerTM [2.10].

Для разработки данной лабораторной работы использовалось приложение DDSTM к гл. 11 – 12 [2.9] «Dispersion Managed Sections». Указанная программа демонстрирует эффект ослабления влияния хроматической дисперсии на искажение оптического сигнала за счет применения волокон, компенсирующих дисперсию (DCF – Dispersion Compensating Fiber).

5.2 Программа VPIplayerTM [2.10] предназначена для воспроизведения многофункциональных программ DDSTM интерактивного имитационного моделирования VPI систем. VPIplayerTM обеспечивает два режима работы:

- Интерфейс пользователя эта часть программы включает в себя общий вид моделируемой схемы, позволяет пользователю изменять заданные параметры отдельных компонентов и запускать непосредственно сам процесс имитационного моделирования (рис. 5.1).
- Визуализаторы или оболочки приборов эта часть программы представляет результаты моделирования исследуемой схемы в виде определенных характеристик, которые отображаются на экране оболочек соответствующих приборов. Например, спектральная характеристика оптического сигнала отображается на экране анализатора оптического спектра (OSA). В состав визуализатора входит набор стандартных команд, необходимых для анализа полученной характеристики. Например: масштабирование, управление маркерами и пр.

Рисунок 5.1. Интерфейс пользователя.

5.3 Установка параметров передачи компонентов схемы осуществляется следующим образом: необходимо подвести курсор к указателю на заданной шкале и, удерживая левую кнопку мыши, изменить его положение. Нажатие правой кнопки мыши в отмеченной области установки параметров вызывает команду «Set Default», последующее нажатие левой кнопки выполняет установку параметров по умолчанию.

5.4 Запуск процесса имитационного моделирования с последующим вызовом соответствующих визуализаторов осуществляется с помощью команды «Start Simulation» (рис. 5.1).

6. ОБЩИЕ ПОЛОЖЕНИЯ

6.1 Данная лабораторная работа включает в себя анализ глаз-диаграммы одного из каналов 8-ми канальной системы WDM с частотным интервалом менее 50 ГГц и скоростью 10 Гбит/с в канале.

6.2 Структурная схема измерения глаз-диаграммы канала 8-ми канальной системы WDM представлена на рис. 6.1 и состоит из следующих компонентов: восемь источников оптического излучения (лазерные диоды - LD), 8ми канальный оптический мультиплексор (MUX), оптические усилители (OA),

оптическое волокно (OB), волокно, компенсирующее дисперсию (DCF) и анализатор канала (Analyzer) [2.9].

Рисунок 6.1. Схема измерений.

6.3 Перед запуском программы необходимо выполнить установку исходных данных (рис. 6.2): длину линейного тракта ВОЛП (SMFlength) 1...160 км, и коэффициент затухания ОВ (SMFattenuation) 0,2...0,4 дБ/км.

Рисунок 6.2. Исходные данные.

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ РАБОТЫ

7.1 Согласно номеру зачетной книжки, определить исходные данные (длина линии SMFlength, км, и коэффициент затухания SMFattenuation, дБ) к выполнению лабораторной работы по следующим формулам:

SMFlength = 160 - mn, км,	(7.1.1)
---------------------------	---------

SMFattenuation =
$$0,40-0,0n$$
, дБ/км, (7.1.2)

где *m* и *n* – предпоследняя и последняя цифра номера зачетной книжки.

7.2 Выполнить установку исходных данных, запустить программу построения глаз-диаграммы первого канала 8-ми канальной системы WDM (см. п. 5.3, 5.4). По завершении программы автоматически появляется оболочка анализатора каналов в режиме анализатора оптического спектра (OSA), внешний вид которой представлен на рис. 7.1.

Рисунок 7.1. Внешний вид интерфейса анализатора каналов в режиме OSA.

7.3. Переключитесь в режим глаз-диаграмы, нажав клавишу «Еуе» верхней панели управления (рис. 7.2). После этого общий вид интерфейса оболочки анализатора каналов в режиме глаз-диаграммы примет вид, представленный на рис. 7.3.

	han	nel A	Inaly	zer												
File	Edi	t Vi	iew	Help										\frown		
Â	Ê	8		n l m	$\simeq \underline{O}$. শি	Т	ヽ ₽	ç	P		🖪		XX		
[1	e-6]				I	aser:	5:TxE	xtModLas	er8.	TxExtM	lodLas	er.La	serC	~1	∛ iye_	

Рисунок 7.2. Включение режима глаз-диаграммы («Еуе») анализатора каналов.

7.4. Для увеличения обзора исследуемой глаз-диаграммы отключите информационную таблицу расчета помехоустойчивости системы WDM отжав клавишу «Show/hide channel table panel» на верхней панели управления (рис. 7.4), после этого общий вид интерфейса оболочки анализатора каналов в режиме глаз-диаграммы примет вид, представленный на рис. 7.5.

Рисунок 7.3. Внешний вид интерфейса анализатора каналов в режиме глаздиаграммы «Еуе».

Channel Analyzer						
File Edit View Help						
é é é / Pa •	ା \Lambda 🥎 🕽	$\mathcal{A} \oplus \mathcal{A}$	9 🖾 🔛			
Power [dBm]		Lase	er5:TxExtMod S	how/hide cha	nnel table pane	rCW1
-18						

Рисунок 7.4. Отключение информационной таблицы

Рисунок 7.5. Внешний вид интерфейса оболочки анализатора каналов в режиме глаз-диаграммы «Еуе» без информационной таблицы.

7.6 Предварительно, согласно схемам расстановки маркеров, представленным в Приложении 2, по полученной глаз-диаграмме выполните измерение перечисленных в табл. 7.1 энергетических параметров формы сигнала. Используйте операцию масштабирования, а также систему вертикальных/горизонтальных маркеров, управление которыми описано в п. 1, 2, 3 Приложения 1, соответственно. Измерение параметров, указанных в таблице 7.1, необходимо выполнить в точках исследуемой глаз-диаграммы $\varphi = \pi$, $\varphi = 0$ и $\varphi = 2\pi$ (рис. 7.4).

№ п/п Наименование параметра Ед. изм. Условное обозначение 1 Максимум амплитуды сигнала при передаче логической «1» мВт $E1_{max}$ 2 Минимум амплитуды сигнала при передаче логической «1» мВт $E1_{min}$ 3 Средняя мощность сигнала при передаче логической «1» мВт $E1$ 4 Максимум амплитуды сигнала при передаче логической «1» мВт $E0_{max}$ 5 Минимум амплитуды сигнала при передаче логического «0» мВт $E0_{max}$ 6 Средняя мощность сигнала при при передаче логического «0» мВт $E0_{min}$ 7 Минимум амплитуды сигнала при передаче логического «0» мВт $E0_{min}$ 6 Средняя мощность сигнала при передаче логического «0» мВт $E0_{min}$ 7 Мощность сигнала по уровню 80% относительно E1 мВт $E_{20\%}$ 8 Мощность сигнала по уровню 20% относительно E1 мВт $E_{20\%}$ 9 Пороговый уровень принятия решения мВт E				Таблица 7.1
1 Максимум амплитуды сигнала при передаче логической «1» мВт $E1_{max}$ 2 Минимум амплитуды сигнала при передаче логической «1» мВт $E1_{min}$ 3 Средняя мощность сигнала при передаче логической «1» мВт $E1$ 4 Максимум амплитуды сигнала при передаче логического «0» мВт $E0_{max}$ 5 Минимум амплитуды сигнала при передаче логического «0» мВт $E0_{min}$ 6 Средняя мощность сигнала при передаче логического «0» мВт $E0_{min}$ 7 Мощность сигнала по уровню 80% относительно E1 мВт $E_{80\%}$ 8 Мощность сигнала по уровню 20% относительно E1 мВт $E_{20\%}$ 9 Пороговый уровень принятия решения мВт E	№ п/п	Наименование параметра	Ед. изм.	Условное обозначение
при передаче логической «1» MBT E1 _{min} 2 Минимум амплитуды сигнала при передаче логической «1» MBT E1 3 Средняя мощность сигнала при передаче логической «1» MBT E1 4 Максимум амплитуды сигнала при передаче логического «0» MBT E0 _{max} 5 Минимум амплитуды сигнала при передаче логического «0» MBT E0 min 6 Средняя мощность сигнала при передаче логического «0» MBT E0 7 Мощность сигнала по уровню 80% относительно E1 MBT E _{80%} 8 Мощность сигнала по уровню 20% относительно E1 MBT E _{20%} 9 Пороговый уровень принятия решения MBT E	1	Максимум амплитуды сигнала	мВт	$E1_{max}$
2 Минимум амплитуды сигнала при передаче логической «1» мВт E1 _{min} 3 Средняя мощность сигнала при передаче логической «1» мВт E1 4 Максимум амплитуды сигнала при передаче логического «0» мВт E0 _{max} 5 Минимум амплитуды сигнала при передаче логического «0» мВт E0 _{min} 6 Средняя мощность сигнала при передаче логического «0» мВт E0 7 Мощность сигнала по уровню 80% относительно E1 мВт E _{80%} 8 Мощность сигнала по уровню 20% относительно E1 мВт E _{20%} 9 Пороговый уровень принятия решения мВт E		при передаче логической «1»		Шах
при передаче логической «1» MBT E1 3 Средняя мощность сигнала при передаче логической «1» мBT E0 4 Максимум амплитуды сигнала при передаче логического «0» мBT E0 _{max} 5 Минимум амплитуды сигнала при передаче логического «0» MBT E0 _{min} 6 Средняя мощность сигнала при передаче логического «0» MBT E0 7 Мощность сигнала по уровню 80% относительно E1 MBT E _{80%} 8 Мощность сигнала по уровню 20% относительно E1 MBT E _{20%} 9 Пороговый уровень принятия решения MBT E	2	Минимум амплитуды сигнала	мВт	$E1_{\min}$
3 Средняя мощность сигнала при передаче логической «1» мВт E1 4 Максимум амплитуды сигнала при передаче логического «0» мВт $E0_{max}$ 5 Минимум амплитуды сигнала при передаче логического «0» мВт $E0_{min}$ 6 Средняя мощность сигнала при передаче логического «0» мВт $E0_{min}$ 7 Мощность сигнала по уровню 80% относительно E1 мВт $E_{80\%}$ 8 Мощность сигнала по уровню 20% относительно E1 мВт $E_{20\%}$ 9 Пороговый уровень принятия решения мВт E		при передаче логической «1»		
передаче логической «1» мВт E0 _{max} 4 Максимум амплитуды сигнала при передаче логического «0» мВт E0 _{max} 5 Минимум амплитуды сигнала при передаче логического «0» мВт E0 _{min} 6 Средняя мощность сигнала при передаче логического «0» мВт E0 7 Мощность сигнала по уровню 80% относительно E1 мВт E _{80%} 8 Мощность сигнала по уровню 20% относительно E1 мВт E _{20%} 9 Пороговый уровень принятия решения мВт E	3	Средняя мощность сигнала при	мВт	E1
4 Максимум амплитуды сигнала при передаче логического «0» мВт $E0_{max}$ 5 Минимум амплитуды сигнала при передаче логического «0» мВт $E0_{min}$ 6 Средняя мощность сигнала при передаче логического «0» мВт $E0$ 7 Мощность сигнала по уровню 80% относительно E1 мВт $E_{80\%}$ 8 Мощность сигнала по уровню 20% относительно E1 мВт $E_{20\%}$ 9 Пороговый уровень принятия решения мВт E		передаче логической «1»		
при передаче логического «0» Max 5 Минимум амплитуды сигнала при передаче логического «0» MBT E0 передаче логического «0» 6 Средняя мощность сигнала при передаче логического «0» MBT E0 7 Мощность сигнала по уровню 80% относительно E1 MBT E _{80%} 8 Мощность сигнала по уровню 20% относительно E1 MBT E _{20%} 9 Пороговый уровень принятия решения MBT E	4	Максимум амплитуды сигнала	мВт	$E0_{max}$
5 Минимум амплитуды сигнала при передаче логического «0» мВт $E0_{min}$ 6 Средняя мощность сигнала при передаче логического «0» мВт $E0$ 7 Мощность сигнала по уровню 80% относительно E1 мВт $E_{80\%}$ 8 Мощность сигнала по уровню 20% относительно E1 мВт $E_{20\%}$ 9 Пороговый уровень принятия решения мВт E		при передаче логического «0»		nick
при передаче логического «0»	5	Минимум амплитуды сигнала	мВт	$E0_{\min}$
6 Средняя мощность сигнала при передаче логического «О» мВт EO 7 Мощность сигнала по уровню 80% относительно E1 мВт E _{80%} 8 Мощность сигнала по уровню 20% относительно E1 мВт E _{20%} 9 Пороговый уровень принятия решения мВт E		при передаче логического «0»		
передаче логического «0» мВт Е _{80%} 7 Мощность сигнала по уровню 80% относительно E1 мВт E _{80%} 8 Мощность сигнала по уровню 20% относительно E1 мВт E _{20%} 9 Пороговый уровень принятия решения мВт E	6	Средняя мощность сигнала при	мВт	E0
7 Мощность сигнала по уровню 80% относительно E1 мВт E _{80%} 8 Мощность сигнала по уровню 20% относительно E1 мВт E _{20%} 9 Пороговый уровень принятия решения мВт E		передаче логического «0»		
80% относительно E1 воло 8 Мощность сигнала по уровню 20% относительно E1 мВт E20% 9 Пороговый уровень принятия решения мВт E	7	Мощность сигнала по уровню	мВт	$E_{80\%}$
8 Мощность сигнала по уровню 20% относительно E1 мВт E20% 9 Пороговый уровень принятия решения мВт E		80% относительно Е1		0070
20% относительно E1 20% 9 Пороговый уровень принятия мВт E решения E	8	Мощность сигнала по уровню	мВт	E20%
9 Пороговый уровень принятия мВт Е решения		20% относительно Е1		2070
решения	9	Пороговый уровень принятия	мВт	E
P		решения		

Примечание.

Средняя мощность сигнала при передаче логической «1» оценивается как среднее арифметическое максимума $E1_{max}$ и минимума $E1_{min}$ амплитуды сигнала при передаче логической «1», соответственно:

$$E1 = \frac{E1_{\max} + E1_{\min}}{2} \,. \tag{7.6.1}$$

Аналогичным образом определяется и средняя мощность сигнала при передаче логического «0»:

$$E0 = \frac{E0_{\max} + E0_{\min}}{2}, \qquad (7.6.2)$$

где $E0_{\text{max}}$ и $E0_{\text{min}}$ - максимум и минимум амплитуды сигнала при передаче логического «0», соответственно.

Рисунок 7.4. Точки глаз-диаграммы $\phi = \pi$, $\phi = 0$ и $\phi = 2\pi$.

Мощность сигнала по уровню 80% $E_{80\%}$ определяется относительно средней мощности сигнала при передаче логической «1» E1:

$$E_{80\%} = 0.8 \cdot E1. \tag{7.6.3}$$

Соответственно, *E*_{20%} определяется относительно средней мощности сигнала при передаче логической «1» *E1* по уровню 20%:

$$E_{20\%} = 0, 2 \cdot E1 . \tag{7.6.4}$$

Полученные результаты измерений сведите в табл. 7.2.

Таблица 7.2.

№ пп	Параметр	Ед. изм.	φ=π	<i>φ</i> =0	<i>φ</i> =2 <i>π</i>
1	$E1_{\rm max}$	мВт			
2	$E1_{\min}$	мВт			
3	<i>E</i> 1	мВт			
4	$E0_{\rm max}$	мВт			
5	$E0_{\min}$	мВт			
6	E0	мВт			
7	${E_{80\%}}$	мВт			
8	E _{20%}	мВт			
9	E	мВт			

7.7. Согласно схемам расстановки маркеров, представленным в Приложении 2, по полученной глаз-диаграмме выполните измерение перечисленных в табл. 7.3 параметров формы сигнала и характеристик самой глаз-диаграммы. Используйте операцию масштабирования, а также систему вертикальных/горизонтальных маркеров, управление которыми описано в п. 1, 2, 3 Приложения 1, соответственно.

			Таблица 7.3
№ п/п	Наименование параметра	Ед. изм.	Условное обозначение
1	Интервал передачи символа	пс	T_S
2	Время нарастания фронта им- пульса по уровню 20% – 80%	пс	T_R
3	Время спада фронта импульса по уровню 80% – 20%	пс	T_F
4	Джиттер	пс	T_{j}
5	Раскрыв глаз диаграммы по амплитуде (высота зоны приня- тия решения)	мВт	ЕОН
6	Раскрыв глаз диаграммы по времени (ширина зоны приня- тия решения)	пс	EOW

Полученные в результате измерений параметры занесите в таблицу 7.4.

№ пп	Параметр	Ед.изм.	Значение
1	T_S	пс	
2	T_R	пс	
3	T_F	пс	
4	T_{j}	пс	
5	ЕОН	мВт	
6	EOW	пс	

Примечание.

При измерении T_R и T_S используйте значения $E_{20\%}$ и $E_{80\%}$ относительно *E1* в точке глаз-диаграммы $\varphi=0$.

7.8. По результатам анализа глаз-диаграммы в точках $\varphi = \pi$, $\varphi = 0$ и $\varphi = 2\pi$ (рис. 7.4) рассчитайте параметры помехоустойчивости исследуемого канала системы WDM, перечисленные в таблице 7.5.

			Таблица 7.5
№ п/п	Наименование параметра	Ед. изм.	Условное обозначение
1	Глубина модуляции (коэффи-	дБ	EX
	циент гашения)		
2	Среднеквадратическое откло-		σ_1
	нение состояния логической		-
	«1»		
3	Среднеквадратическое откло-		σ_0
	нение состояния логического		0
	«O»		
4	Q-фактор		Q
5	Оптимальное значение порого-	мВт	E_{\min}
	вого уровня принятия решения		
6	Коэффициент ошибок		BER

Результаты расчета сведите в таблицу 7.6.

Примечание.

Коэффициент гашения (*EX* – Extinction Ratio) является мерой оценки глубины модуляции источника оптического излучения передающего модуля ВОСП. ЕХ является одной из составляющих, определяющих протяженность линейного тракта, обеспечивающей надежные передачу и прием сигнала. Глубина модуляции определяется как логарифм отношения средней мощности

сигнала при передаче логической «1» к средней мощности сигнала при передаче логического «0»:

$$EX = 10 \lg \left(\frac{E1}{E0}\right), \, \text{дБ}$$
(7.8.1)

					Таблица 7.6.
№ пп	Параметр	Ед. изм.	$\varphi = \pi$	<i>φ</i> =0	φ=2π
1	EX	дБ			
2	σ_1				
3	σ_{0}				
4	Q				
5	E_{\min}	мВт			
6	BER				

Q-фактор – это параметр, который непосредственно отражает качество сигнала цифровой СП. Существует определенная функциональная зависимость Q-фактора сигнала и измеряемого коэффициента ошибок ВЕR. Q-фактор определяется путем статистической обработки результатов измерения амплитуды и фазы сигнала на электрической уровне, а именно – непосредственно по глаз-диаграмме. При этом выполняется построение функции распределения состояний «1» и «0», а для этих распределений, в предположении их Гауссовой формы, оцениваются математические ожидания состояний E1 и E0 и их среднеквадратические отклонения σ_1 и σ_0 . Q-фактор рассчитывается по следующей формуле:

$$Q = \frac{|E1 - E0|}{\sigma_1 + \sigma_0}$$
(7.8.2)

В данной работе среднеквадратические отклонения σ_1 и σ_0 определяются относительно максимального/минимального значения амплитуды сигнала при передаче «1» и «0», согласно правилу «трех сигма», в предположении Гауссовой формы распределения состояний «1» и «0»:

$$\sigma_1 = \frac{E1_{\max} - E1_{\min}}{6}$$
(7.8.3)

$$\sigma_0 = \frac{E0_{\max} - E0_{\min}}{6}$$
(7.8.4)

Оптимальное значение порогового уровня принятия решения E_{min} , при котором коэффициент ошибок *BER* принимает минимальное значение, также можно определить через Q-фактор:

$$E_{\min} = \frac{E1\sigma_0 + E0\sigma_1}{\sigma_0 + \sigma_1} \tag{7.8.5}$$

При этом сам коэффициент ошибок *BER* определяется по следующей формуле:

$$BER = \frac{1}{2} \operatorname{erfc}\left(\frac{Q}{\sqrt{2}}\right) \approx \frac{1}{Q\sqrt{2\pi}} \exp\left(-\frac{Q^2}{2}\right), \qquad (7.8.6)$$

где *erfc* – вспомогательная функция интеграла ошибок:

$$erfc(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \exp\left(-\frac{\beta^2}{2}\right) d\beta.$$
 (7.8.7)

Необходимо отметить, что приближенная формула расчета *BER*, справедлива при значениях аргумента *erfc* больше 3, иными словами, только при выполнении условия:

$$\frac{Q}{\sqrt{2}} > 3.$$
 (7.8.8)

Если условие (7.8.8) не выполняется, необходимо применение точной формулы, использующей непосредственно саму вспомогательную функцию интеграла ошибок *erfc*.

7.9. Используя результаты анализа глаз-диаграммы, сведенные в табл. 7.2, 7.4 и 7.6, соответственно, зарисуйте в масштабе контур глаз-диаграммы исследуемого канала с отображением необходимых для последующего построения маски параметров. Пример подобного контура глаз-диаграммы представлен на рис. 7.5.

7.10. Согласно рекомендациям стандарта ITU-T G.957, представленным в Приложении 3, нанесите на построенную глаз-диаграмму маски (шаблоны), соответствующие уровням SDH STM-1, STM-4 и STM-16.

7.11. В выводах необходимо привести полученное значение *BER*, а также результаты анализа наложения масок (шаблонов) на исследуемую глаздиаграмму.

Рисунок 7.5. Построение контура глаз-диаграммы.

ПРИЛОЖЕНИЕ 1.

Основы работы с программным обеспечением оболочки анализатора каналов в режиме глаз-диаграммы

1. Масштабирование

Отдельный фрагмент глаз-диаграммы может быть увеличен следующим образом: удерживая левую кнопку мыши необходимо выделить рамкой исследуемый фрагмент (рис. 1 (а)). Затем, после того, как кнопка будет отпущена, увеличенный фрагмент выводится на дисплей (рис. 1 (б)). В свою очередь, нажав правую кнопку мыши, можно оперативно обратно перейти к общему виду спектральной характеристики.

Рисунок 1. Увеличение фрагмента спектральной характеристики OSA.

Увеличить/уменьшить масштаб характеристики также можно с помощью соответствующих кнопок на панели управления: увеличение ("Zoom In", рис. 2 (а)), уменьшение ("Zoom Out", рис. 2 (б)) и переключение на общий вид характеристики ("Fit All", рис. 2 (в)).

Рисунок 2. Панель управления. Режим масштабирования.

2. Управление вертикальными маркерами

Для управления вертикальными маркерами необходимо войти в меню «Vertical Markers» (рис. 2 (a)). Активизация одного из двух маркеров «А» - «В» осуществляется путем переключения между соответствующими одноименными закладками. Для включения маркера необходимо нажать клавишу «Create» (рис. 2 (a)), после чего на дисплее появляется соответствующий маркер, а в одноименном информационном поле отображается координата его текущего положения (время, с) (рис. 2 (б)).

Активизированный маркер можно перемещать по дисплею с помощью мыши, удерживая левую кнопку, либо используя клавиши управления движением маркера: «<<», «>>» - ускоренное перемещение и «<», «>» - изменение положения маркера на одну точку дискретизации (рис. 2 (в)).

Перемещение маркеров «А» и «В» может осуществляться синхронно. Для этого необходимо установить флажок на позиции «Track» (рис. 2 (в)). Для отключения режима синхронного перемещения, соответственно, необходимо указанный флажок снять.

Удаление маркера осуществляется путем нажатия клавиши «Delete» (рис. 2 (в)).

В графе « Δ » отображаются значения разности координат положения маркеров «A» и «B», соответственно (рис. 2 (г)).

Относительно текущего положения активизированного маркера «А» или «В» в автоматическом режиме может быть выполнена оценка таких параметров, как коэффициент ошибок (BER), Q-фактор (Q), раскрыв глаздиаграммы (Eye-opening). Для этого необходимо установить флажок в позиции «BER».

Рисунок 2. Управление вертикальными маркерами

3. Управление горизонтальными маркерами

Для управления горизонтальными маркерами необходимо войти в меню «Horiz Markers» (рис. 3 (a)). Активизация одного из двух маркеров «H» - «I» осуществляется путем переключения между соответствующими одноименными закладками. Для включения маркера необходимо нажать клавишу «Create» (рис. 3 (a)), после чего на дисплее появляется соответствующий маркер, а в одноименном информационном поле отображается координата его текущего положения (мощность мВт) (рис. 3 (б)).

Активизированный маркер можно перемещать по дисплею с помощью мыши, удерживая левую кнопку.

В графе «Δ» отображаются значения разности координат положения маркеров «Н» и «І», соответственно (рис. 3 (в)).

Перемещение маркеров «Н» и «І» может осуществляться синхронно. Для этого необходимо установить флажок на позиции «Sync» (рис. 3 (г)). Для отключения режима синхронного перемещения, соответственно, необходимо указанный флажок снять.

Удаление маркера осуществляется путем нажатия клавиши «Delete» (рис. 3 (г)).

Рисунок 3. Управление горизонтальными маркерами.

ПРИЛОЖЕНИЕ 2.

Идентификация глаз-диаграммы

Глаз-диаграмма представляет собой результат многократного наложения битовых последовательностей с выхода генератора ПСП, отображаемый на экране осциллографа в виде диаграммы распределения амплитуды сигнала по времени. Пример глаз-диаграммы с указанием основных параметров представлен на рис. 1.

Рисунок 1. Идентификация глаз-диаграммы.

Расстановка маркеров при измерении энергетических характеристик сигнала по глаз-диаграмме в точках $\varphi = \pi$, $\varphi = 0$ и $\varphi = 2\pi$ представлена на рис. 2.

Рисунок 2. Измерение энергетических параметров

Эффекты уширения импульса, а также фазовое дрожание сигнала вызывают появление взаимных искажений между символами, что приводит к пересечению глаз-диаграммы с временной осью в разные промежутки времени. Максимальная ширина области пересечения с временной осью определяется как пиковое фазовое дрожание или джиттер передачи данных T_j . Джиттер измеряется обычно в единицах времени или как отношение к интервалу передачи символа T_j/T_s .

Расстановка маркеров при измерении параметров сигнала во временной области по глаз-диаграмме представлена на рис. 3.

Рисунок 3. Измерение параметров во временной области.

приложение 3.

Маска глаз-диаграммы

При оценке качества передачи сигнала конкретной ЦСП заданного уровня цифровой иерархии (стандарта, спецификации) удобно использовать маску (шаблон) глаз-диаграммы. Маска глаз-диаграммы представляет собой некоторую эквивалентную зону принятия решения, границы которой строятся по заданным параметрам, соответствующим уровню тестируемой ЦСП.

Рисунок 1. Наложение маски на глаз-диаграмму.

Тестирование выполняется следующим образом: заданная маска накладывается на реальную, полученную в результате измерений глаз-диаграмму (большинство современных цифровых анализаторов позволяют выполнить данную операцию). Если границы маски находятся внутри или совпадают с зоной раскрытия глаз-диаграммой, можно сделать вывод, о соответствии тес-

тируемой ЦСП показателям качества заданного уровня цифровой иерархии (BER, джиттер). В противном случае требуется проведение дополнительных мероприятий, уменьшающих искажения формы сигнала ЦСП при передаче по линейному тракту. При наложении маски на полученную глаз-диаграмму также учитывается не только соответствие раскрытия глаз-диаграммы, но и ограничения на максимальные отклонения от среднего уровня.

На рис.1 представлен результат наложения маски на заданную глаздиаграмму, при этом значения по осям координат представлены в относительных единицах: по оси Y – относительно среднего значения мощности оптического излучения при передаче логической «1», по оси X – относительно единичного тактового интервала для соответствующего уровня SDH.

Параметры стандартной маски глаз-диаграммы для ЦСП SDH, согласно рекомендациям ITU-T G.957 представлены в таблице1:

Таблица 1.

	x ₁ /x ₄	x ₂ /x ₃	y ₁ /y ₂	x3-x2
STM-1	0.15/0.85	0.35/0.65	0.20/0.80	-
STM-4	0.25/0.75	0.40/0.60	0.20/0.80	-
STM-16	-	-	0.25/0.75	0.2

Корректор Вяткина С.С. Подписано в печать **.**.2004 Формат 60х84/16 Печать оперативная УС.п.л.-1,5 п.л. Уч.из.л. – 24 с. Цена договорная. Тираж 150 экз.

Ротапринт ПГАТИ